domingo, 6 de marzo de 2016

MOTORES DE CORRIENTE ALTERNA MONOFASICOS

1. MOTORES MONOFASICOS DE INDUCCION:

A. Motores de fase partida:
a. Motor de arranque por resistencia
b. Motor de arranque por capacitor
c. Motor de fase partida y capacitor permanente de un valor.
d. Motor de capacitor de dos valores.
B. Motor de inducción de arranque por reluctancia
C. Motor de inducción de polos sombreados.
2. MOTORES MONOFASICOS CON CONMUTADOR
A. Motor de Repulsión
B. Motor serie de corriente alterna
C. Motor universal
3. MOTORES MONOFASICOS SINCRONOS
A. Motor de reluctancia.
B. Motor de histéresis
C. Motor subsíncrono

1. MOTORES MONOFÁSICOS DE INDUCCIÓN
Introducción.
La necesidad del motor de inducción monofásico se explica de la siguiente forma: existen muchas  instalaciones, tanto industriales como residenciales a las que la compañía eléctrica sólo suministra un servicio de ca monofásico. Además, en todo lugar casi siempre hay necesidad de motores pequeños que trabajen con suministro monofásico para impulsar diversos artefactos electrodomésticos tales como máquinas de coser, taladros, aspiradoras, acondicionadores de aire, etc.
La mayoría de los motores monofásicos son “motores pequeños” de “caballaje fraccionario” (menos de 1 hp). Sin embargo, algunos se fabrican en tamaños normales de caballaje integral: 1.5,
2, 3, 5, 7.5 y 10 hp tanto para 115 V como para 230 V en servicio monofásico y aun para servicio de 440 V entre los límites de 7.5 a 10 hp. Los tamaños especiales de caballaje integral van desde varios cientos hasta algunos miles de hp en servicio de locomotoras, con motores de serie monofásicos de ca.

Para todos los efectos debemos demostrar que al aplicar una fuente monofásica a un devanado de una máquina eléctrica de inducción con rotor en jaula de ardilla, no se producirá ninguna f.m.m. giratoria neta y por lo tanto, tampoco se podrá desarrollar ni contar con un par mecánico que le permita a la máquina iniciar su giro.
El campo magnético producido por una corriente monofásica en una bobina está siempre sobre el eje de la misma (es decir no se produce un campo magnético giratorio), si bien variará su valor y sentido. Para que se produzca un campo alterno giratorio tienen que haber por lo menos dos bobinas desfasadas entre sí 90º.
Para que se produzca un campo giratorio en el estator es condición necesaria que haya un decalaje en el tiempo entre la corriente del arrollamiento auxiliar y la corriente del arrollamiento principal. Los campos alternos que se producen en el arrollamiento principal y arrollamiento secundario estan decalados entre sí en el espacio y en el tiempo, y forman un campo giratorio común. Ese campo giratorio permite autoarranque. Los motores de inducción monofásicos pueden ahora arrancar solos.

El desfase entre las corrientes del arrollamiento principal y del arrollamiento secundario se consigue mediante el efecto de una capacidad, de una resistencia activa o por la mayor inductividad
del arrollamiento auxiliar. Si se intercala una capacidad, una resistencia activa o una inductancia en
el arrollamiento auxiliar de los motores de inducción monofásicos, se obtiene un campo giratorio. Los motores monofásicos con inductancia se utilizan poco, por su reducido par de arranque.
Aspectos constructivos Fundamentalmente los motores monofásicos de inducción cuentan con un estator construido de material ferromagnético (por ejemplo, chapas de hierro al silicio) sobre el que se colocan las bobinas principales, tantas como polos tenga el motor. En la figura se puede ver, además, un rotor de características similares al estator, rodeado de barras conductoras cortocircuitadas en los extremos por anillos formando una “jaula de ardilla” típica de los motores de inducción.

Estas sencillas máquinas conservan la propiedad fundamental de no poseer contactos eléctricos rozantes lo que les confiere una durabiliad muy alta y muy bajo mantenimiento.
Los motores de inducción monofásicos llevan un estator en cuyo paquete de chapas van alojados dos bobinados de Cobre. El bobinado principal, que suele denominarse arrollamiento principalva colocado en 2/3 de las ranuras del estator y sus conexiones llevan las designaciones Ul,  U2. El arrollamiento auxiliar (bobinado auxiliar) Zl, Z2 va alojado en el tercio restante de ranuras, desfasado en el espacio 90º.
En cuanto a la construcción del motor monofásico de inducción, hay que señalar que el rotor de cualquier motor monofásico de inducción es intercambiable con algunos polifásicos de jaula de ardilla. No hay conexión física entre el rotor y el estator, y hay un entrehierro uniforme entre ellos.


 Principio de funcionamiento

 Los motores monofásicos de inducción experimentan una grave desventaja. Puesto que sólo hay una fase en el devanado del estator, el campo magnético en un motor monofásico de inducción no rota. En su lugar, primero pulsa con gran intensidad, luego con menos intensidad, pero permanece siempre en la misma dirección. Puesto que no hay campo magnético rotacional en el estator, un motor monofásico de inducción no tiene par de arranque.
Si pensamos en un motor de un solo par de polos, podemos ver fácilmente que el campo generado por el devanado principal al conectarse a una fuente de tensión alterna, tiene una dirección fija y un signo cambiante en forma sinusoidal. Los motores de inducción requieren un campo magnético rotante para inducir las corrientes adecuadas en el rotor y producir un par mecánico.
Si el campo magnético es fijo en el espacio y alterno en el tiempo y el rotor se halla detenido (por ejemplo al intentar arrancarlo) el circuito electromagnético resultante se asemeja mucho al de un transformador en cortocircuito, donde el rotor haría las veces de secundario. Para comprender el funcionamiento de éstas máquinas debemos imaginar que el campo magnético alterno es en realidad
la composición de dos campos de módulos constantes pero rotantes en sentidos opuestos. En la figura
se esquematiza esta construcción abstracta en la que ahora se tiene el equivalente a dos motores trifásicos conectados en secuencias opuestas y unidos por su eje.

Si por algún medio, en cambio, se impulsara el rotor en un sentido cualquiera se induciría
instantáneamente un par en el eje que aceleraría la máquina hasta alguna velocidad de equilibrio con
el par resistente (en vacío, las pérdidas mecánicas propias). Entonces el motor monofásico puede pensarse como dos motores trifásicos opuestos en los que uno prevalece sobre el otro al definirse
externamente un sentido de giro.
De ésta forma los rotores no giran ya que en un caso ideal los momentos inducidos a cada lado del eje son iguales y opuestos. Como ya se conoce de la teoría de motores trifásicos, los campos magnéticos rotantes inducen un momento en los rotores que varía con la velocidad de éstos últimos.
La curva de torques que generan el campo 1 y 2 se ilustra en la figura (3) donde se puede ver que al
sumarse los efectos (zona sombreada) no se obtiene ningún par resultante con el rotor detenido. Así
llegamos a la característica principal de los motores de inducción monofásicos: no pueden arrancar
por sí solos.

A. Motores monofásicos de fase partida

a. Arranque por resistencia:

Se basa en colocar un bobinado auxiliar desplazado físicamente 90º del principal. Además se lo construye de conductor más fino y suele tener diferente cantidad de vueltas. Así se le otorga una impedancia diferente al del devanado principal por lo que la su corriente está desfasada. El devanado de arranque tiene menos vueltas y consiste en alambre de cobre de menor diámetro que el devanado de marcha. Por lo tanto, el devanado de arranque tiene alta resistencia y baja reactancia. A la inversa, el devanado de marcha, con más vueltas de alambre más grueso, tiene baja resistencia y alta reactancia; pero debido a su impedancia total menor, la corriente en el devanado de marcha es en general mayor que la correspondiente en el devanado de arranque. Al sumar los campos principal y auxiliar se tiene un vector giratorio que describe una elipse. No es un campo rotante de magnitud constante pero alcanza para impulsar por sí sólo al  rotor en el arranque.
El diagrama esquemático de este tipo de motores se muestra en la figura. El bobinado auxiliar se diseña con una razón Ra/La mayor que la del bobinado principal o de marcha con ello se logra desfasar la corrientes según muestra la figura. Esta mayor razón Ra/La normalmente se logra usando alambre de menor sección (mayor Ra). Ya que el devanado auxiliar es de sección pequeña, no puede funcionar por mucho tiempo. Se recurre a un interruptor centrífugo que desconecta el circuito auxiliar una vez que el rotor alcanza aproximadamente el 70% de la velocidad asignada. Este sistema se aplica en potencias entre 50W y 500W.


El campo giratorio se forma si se conecta una resistencia activa en serie con el bobinado auxiliar. La resistencia activa necesaria se puede formar también enrollando el arrollamiento auxiliar con un hilo resistente. Pero generalmente se ejecuta el arrollamiento auxiliar como arrollamiento bifilar. Para ello se enrolla un tercio del número de espiras de la bobina en sentido contrario a las espiras restantes.
En el arrollamiento auxiliar bifilar se anula en parte el efecto inductivo, pero se mantiene su resistencia activa. Su par de arranque corresponde aproximadamente al par nominal.

Este tipo de motor tiene un bajo a moderado torque de partida el que depende de las corrientes y su desfase entre ellas. Se utilizan en el caso de escasa frecuencia de arranque, por ejemplo para compresores de frigoríficos o como motores para quemadores de fuel, en pequeñas bombas centrífugas, quemadores de aceite, sopladores y en cualquier otro tipo de cargas que requieran un moderado par de arranque a una velocidad bastante constante.
Este tipo de motor es normalmente de caballaje fraccionario y como su rotor es pequeño, tiene poca inercia hasta cuando está conectado con la carga. Sin embargo, las principales desventajas del motor son: 1) su bajo par de arranque y 2) que, cuando tiene mucha carga se produce un par elíptico o pulsante que hace que el rotor emita ruidos preocupantes. Por este motivo, el motor de fase partida se usa en aparatos electrodomésticos para impulsar cargas que producen ruido, como por ejemplo, quemadores de aceite, pulidoras, lavadoras de ropa, lavadoras de vajillas, ventiladores, sopladores de aire, compresores de aire y bombas de agua pequeñas.
 
El control de la velocidad de estos motores es relativamente difícil porque la velocidad síncrona del flujo rotatorio del estator queda determinada por la frecuencia y el número de polos desarrollados en el devanado de marcha del estator (η = 120f/p). Se debe hacer notar que todos los cambios de velocidad se deben llevar a cabo en límites mayores al que trabaja el interruptor centrífugo y por lo tanto menores que la velocidad sincrónica; obteniendo un rango muy limitado para el control de velocidad.
La capacidad del devanado de arranque se basa sólo en trabajo intermitente. Si el interruptor centrífugo se descompone y no puede abrir, por lo general debido a que se pegan los contactos, el calor excesivo que produce el devanado de arranque, de alta resistencia, aumentará de tal manera la temperatura del estator, que finalmente se quemarán ambos devanados.
Los motores de fase partida de mejor diseño tienen relevadores térmicos interconstruidos, conectados en serie con la terminal de la línea, para desconectar el motor del suministro siempre que la temperatura sea muy elevada.

b. Motor de fase partida arranque por capacitor

 Como medio de mejorar el par relativamente bajo del motor de fase partida por resistencia se agrega un capacitor al devanado auxiliar para producir una relación casi real de 90° entre las corrientes de los devanados de arranque y de marcha, en lugar de aproximadamente 30°, elevando el par de arranque a los límites normales del par nominal. La figura muestra el diagrama de conexiones del motor de arranque por capacitor, cuya diferencia implica la adición de un capacitor en el devanado auxiliar. Se puede advertir también a partir de la figura, el mejoramiento del torque de partida debido a la inclusión del capacitor.

Debido a su mayor par de arranque, que es de 3.5 a 4.5 veces el par nominal, y a su reducida corriente de arranque para la misma potencia al instante del arranque, el motor de arranque por capacitor se fabrica hoy en tamaños de caballaje integral hasta de 7.5 hp.
El condensador suele ir montado en la carcasa del motor. Si el arrollamiento auxiliar no es de tipo dividido, el condensador se conecta antes del arrollamiento auxiliar, y en el caso de arrollamiento auxiliar partido, va situado entre sus bobinas parciales.


 En virtud de su mayor par de arranque, los motores de fase partida y arranque por capacitor se emplean para bombas, compresores, unidades de refrigeración, acondicionadores de aire y lavadoras grandes, en los que se necesita un motor monofásico que desarrolla alto par de arranque bajo carga y cuando se requiere un motor reversible.
Para cambiar el sentido de giro del motor, es necesario invertir la polaridad de la corriente del arrollamiento auxiliar. Esto se hace cambiando la conexión del condensador en la placa de bornes. El condensador y la inductividad del arrollamiento auxiliar forman un circuito oscilante en serie. Por eso la tensión aplicada al condensador es superior a la tensión de la red. La máxima tensión en el condensador aparece cuando el motor gira en vacío.
Los capacitores para el motor de condensador tienen que estar dimensionados para la máxima tensión que se pueda producir. En la tabla se muestran algunos valores comerciales usados

c. Motor de fase partida y capacitor permanente de un valor.


 Este tipo de motor tiene dos devanados permanentes que, en general, se arrollan con alambre del mismo diámetro y el mismo número de vueltas; es decir, los devanados son idénticos A este motor también se le conoce como motor de capacitor dividido permanente, es una versión menos cara que la del motor de arranque por capacitor y capacitor de marcha.
 Ya que trabaja en forma continua como motor de arranque por capacitor no se necesita interruptor centrífugo. Los motores de este tipo arrancan y trabajan en virtud de la descomposición de la fase de cuadratura que producen los dos devanados idénticos desplazados en tiempo y espacio. En consecuencia, no tiene el alto par de marcha normal que producen los motores ya sea de arranque por capacitor o de arranque por resistencia. El capacitor que se usa se diseña para servicio continuo y es del tipo de baño de aceite. El valor del capacitor se basa más en su característica de marcha óptima que en la de arranque. Al instante de arranque, la corriente en la rama capacitiva es muy baja. El resultado es que estos motores, a diferencia de los de arranque por capacitor, tienen par de arranque muy deficiente, de entre 50 a 100 por ciento del par nominal, dependiendo de la resistencia del rotor.

En este tipo de motor el condensador del bobinado auxiliar permanece conectado todo el tiempo. Esto simplifica en construcción y reduce el costo ya que no es necesario el switch centrífugo además el factor de potencia, torque y eficiencia resultan mejorados ya que el motor opera como motor bifásico. La operación continua del condensador requiere ciertas características constructivas y se debe comprometer el torque de partida frente al torque de la marcha.
Este tipo de motor se presta al control de velocidad por variación del voltaje de suministro. Se usan diversos métodos para ajustar el voltaje aplicado al estator y producir el control deseado de velocidad, como transformadores con varias salidas, variacs, potenciómetros y resistencias o reactores con varias salidas.
Debido a su funcionamiento uniforme y a la posibilidad de controlar la velocidad, las aplicaciones de este motor pueden ser ventiladores de toma y descarga en máquinas de oficina, unidades de calefacción o aire acondicionado. Se recomienda utilizarlos cuando se requiere accionar cargas con mínimo par de arranque.

d. Motor de fase partida por condensador de arranque y de marcha

El motor produce un par de arranque elevado si se utiliza un condensador de arranque CA y un condensador de servicio Cm. Mediante la capacidad de ambos condensadores se puede incrementar el par de arranque hasta un valor que sea 2 a 3 veces superior al par nominal. Por este motivo el motor puede arrancar en carga. Una vez que se haya acelerado, se desconecta el condensador de arranque quedando sólo el condensador de servicio o de marcha. Es necesario efectuar esta desconexión ya que, debido a la elevada capacidad total del condensador de arranque y del condensador de servicio, pasa gran intensidad a través del arrollamiento auxiliar. En régimen permanente, esto daría lugar a sobrecalentamiento. La desconexión se realiza mediante relés térmicos o en función de la intensidad o por un interruptor centrífugo. El motor de capacitor de arranque y de marcha, combina las ventajas de funcionamiento casi sin ruido y de control limitado de velocidad del capacitor de marcha con el alto par de arranque del motor de arranque por capacitor.


Se emplean dos capacitores durante el período de arranque. Uno de ellos, el capacitor electrolítico de arranque, semejante al que se usa para el trabajo intermitente del motor de arranque por capacitor, tiene una capacitancia bastante alta, de 5 a 6 veces el valor del capacitor de marcha y se saca del circuito mediante un interruptor centrífugo al alcanzar el 75 % de la velocidad sincrónica y con ello produce el par de arranque necesariamente alto. Entonces el motor continúa acelerando como motor de capacitor permanente. El condensador de servicio debe presentar una potencia reactiva de 1,3 kvar por cada kW de potencia del motor.
Los motores de condensador con potencia nominal hasta unos 2 kW se emplean para el accionamiento de máquinas electrodomésticas, máquinas herramientas y máquinas para la construcción, por ejemplo para frigoríficos y lavadoras.
Este tipo de motor combina el funcionamiento silencioso y el posible amplio control de velocidad del motor con capacitor de marcha (Cm), con el elevado Tarr del motor con capacitor de arranque (Carr). El Cm es generalmente de aceite y trabaja en forma continua permaneciendo conectado en serie con cualquiera de los dos devanados estatóricos idénticos con que cuenta este motor.
Al mantener las características del motor de Cm, este motor se considera reversible, pues cuando s = 25 % durante el proceso de inversión, el IC se cierra proporcionando un par máximo de frenado, de tal forma que al llegar a velocidad cero, invierte su sentido de giro y el IC se abre de nuevo al ser s = 25 %. Este motor es muy usado a nivel industrial y en los compresores de los aires acondicionados comerciales.
Al usar doble capacitor se eleva el rendimiento, el factor de potencia y el par máximo o par de desenganche. Al igual que para el caso anterior, este motor funciona como un motor bifásico desequilibrado y por ende, desarrolla un par más uniforme, siendo mucho más silencioso y más eficiente que aquellos que funcionan como monofásicos puros (en operación usan un sólo devanado).

B. Motor de inducción de arranque por reluctancia

Otro motor de inducción que emplea un estator con entrehierro no uniforme es el motor de  arranque
por reluctancia.* Su rotor es el clásico de jaula de ardilla que desarrolla par una vez iniciada la rotación por el principio de reluctancia. Debido a los entrehierros desiguales entre el rotor y los polos
salientes no uniformes, sobre el flujo de excitación principal se produce un efecto de barrido. * Las normas ASA definen el motor de reluctancia como un motor síncrono similar en construcción al motor de inducción, en el cual el miembro que lleva el circuito secundario tiene polos salientes, sin excitación de CC (rotor). Arranca como un motor de inducción pero funciona normalmente a la velocidad síncrona.
*El motor de arranque por reluctancia es un motor de inducción cuyo arranque es iniciado por el principio de reluctancia. No es igual que el motor de reluctancia (motor síncrono no excitado). El motor de reluctancia monofásico, el motor de histéresis y el motor subsíncrono son, desde luego, motores monofásicos.
Construcción y principios de funcionamiento:
Se basa en la propiedad del motor síncrono con rotor de polos salientes, en que es capaz de producir un par motor y girar a la velocidad síncrona, sin excitación del campo con CC.
El reducido motor de reluctancia, está concebido a partir del motor de inducción, por lo que al rotor de jaula de ardilla, se le han suprimido algunos dientes (por sectores) con el objeto de lograr los polos
salientes. Dado que este motor síncrono arranca como motor de inducción, los anillos que cierran  las
barras del rotor deben estar completos en toda la periferia, conservándose así, el arrollamiento amortiguador en jaula de ardilla, utilizado no solo para el arranque, sino que también, proporciona suficiente estabilidad contra las oscilaciones cuando se alcanza la velocidad sincrónica.
Al igual que para los motores síncronos excitados con CC, la puesta en sincronismo se facilita cuando la velocidad alcanzada como motor de inducción es tan elevada como sea posible. Para ello, es importante hacer baja la resistencia del rotor. También mejora ésta situación, cuanto menor sea el WR2 de la masa giratoria del rotor (rotor + carga acoplada al eje)
El estator del motor de reluctancia puede ser del tipo de fase auxiliar, del tipo de condensador y del tipo bobina pantalla (espira sombra).
La figura, representa una de las láminas dispuestas para un rotor destinado a un motor de reluctancia de cuatro polos en el estator. El motor arrancará como un motor de inducción y se irá acelerando hasta una velocidad de escaso deslizamiento (carga ligera). El par de reluctancia nace de la tendencia del rotor a situarse por sí mismo en la posición de mínima reluctancia respecto al campo giratorio (a la onda de flujo) que gira en el entrehierro a la velocidad síncrona.


Figuras: a) Chapa troquelada para el rotor de un motor síncrono de reluctancia de cuatro polos.
b) Características de arranque En la figura b está representada la curva característica par-velocidad de un motor de reluctancia
monofásico de fase partida. El alto valor del par de éste motor, está basado en la necesidad de obtener características satisfactorias. Para ello, se hace necesario construir el motor de reluctancia, con una estructura equivalente a un motor de inducción de 2 a 3 veces mayor la potencia que el síncrono.
Ranuras barreras de flujo se practican en las chapas del rotor de los motores de reluctancia para aumentar el par motor sincronizante, ya que el mismo, es función de la diferencia entre la reactancia
axial Xa y la reactancia en cuadratura Xc Las muescas, los achatamientos y las protuberancias hechas en el rotor generan áreas igualmente espaciadas de alta reluctancia, que son llamadas polos salientes y cuyo número debe coincidir con el número de polos estatóricos.
El funcionamiento de este motor se basa en que la reluctancia del entrehierro sea una función de la posición angular del rotor con respecto al eje del devanado estatórico, generando un par de reluctancia cuando el rotor gire a velocidad sincrónica (ns) (este motor se considera sincrónico, pese a que arranca como motor de inducción). Si a un rotor jaula de ardilla tradicional se le quitan algunos
dientes, dejando intactas las barras y los anillos extremos, tal y como se muestra en la figura adjunta
y si se usa cualquiera de los sistemas estatóricos de cualquiera de las máquinas antes descritas, el motor arrancará por sí solo como un motor de inducción y en presencia de bajas cargas, se acelerará hasta alcanzar un bajo valor de deslizamiento.
Una vez que el estator se energiza, el rotor acelera como motor de inducción jaula de ardilla con un deslizamiento muy bajo, pues el flujo rotativo del estator arrastra lentamente los polos salientes del rotor. A una velocidad crítica, las trayectorias de baja reluctancia dadas por los polos salientes hacen que estos polos entren en sincronismo con el flujo rotante del estator, haciendo que el deslizamiento sea nulo y desapareciendo la acción de inducción, pues el rotor es empujado por la simple atracción magnética llamada torque o par de reluctancia (Trel).

Este retraso momentáneo se representa mediante un desplazamiento angular conocido como ángulo de torque o de reluctancia (δrel). Una vez que finaliza el fenómeno transitorio de aumento de carga, el rotor recupera el sincronismo a un valor de δrel correspondiente al nivel de carga solicitado en el eje del motor. El aumento en el torque de reluctancia causado por el aumento en δrel, balancea justamente el nuevo torque de carga más las pérdidas. El Trel crece al crecer el δrel, alcanzando su valor máximo cuando δrel = 45º (límite de desenganche). Para valores de δrel mayores de 45º, la trayectoria del flujo entre las líneas centrales de los polos estatóricos y rotóricos crece y por lo tanto, crece la reluctancia y el flujo decrece y la atracción magnética del rotor por parte del campo variable del estator disminuye. Bajo estas condiciones el rotor se sale de sincronismo y el motor empieza a funcionar como motor de inducción con el deslizamiento correspondiente al nivel de sobrecarga. El valor promedio del par de reluctancia (Trel), puede ser calculado mediante el uso de la siguiente ecuación:

 C. Motor de polos sombreados.

Todos los motores monofásicos que se describieron anteriormente emplean estatores con entrehierros uniformes con respecto a sus devanados de rotor y estator, que están distribuidos uniformemente por la periferia del estator. Los métodos de arranque se basan en general en el principio de la fase partida de producir un campo magnético rotatorio para iniciar el giro del rotor.
Una manera fácil de proporcionar el par de arranque de un motor monofásico es integrar un corte en cada polo de los 30o al 60o al bobinado principal. Por lo general 1/3 de los polos está rodeado por una cinta de cobre desnudo. Estas bobinas de sombra producen un flujo amortiguado quedando una separación de 30o a 60o desde el campo principal. Este flujo amortiguado con el componente principal no amortiguado, produce un campo giratorio con un par de arranque pequeño que inicia el giro del rotor.
El motor de polos sombreados es, en general, un motor pequeño de potencia fraccionaria que no es mayor de 1/10 hp, aunque se han producido motores hasta de ¼ hp. La gran ventaja de este motor estriba en su extrema simplicidad: un devanado monofásico, rotor con jaula de ardilla vaciada y piezas polares especiales. No tiene interruptores centrífugos, capacitores, devanados especiales de arranque ni conmutadores. En la figura se puede observar su curva característica velocidad-par, en donde se puede apreciar cómo su par de arranque es muy limitado comparado con los motores anteriormente descritos.
El flujo en el segmento del polo sombreado siempre está en retraso al correspondiente en el segmento principal, tanto en tiempo como en espacio físico, aunque no existe entre ellos una verdadera relación de 90°. El resultado es que se produce un campo magnético rotatorio, suficiente
para originar un pequeño desbalanceo en los pares del rotor, tal que el par en el sentido de las manecillas del reloj es mayor que el contrario, o viceversa, y el rotor siempre gira en la dirección del campo rotatorio.
El motor de polos sombreados es robusto, barato, pequeño y necesita de poco mantenimiento.
Desafortunadamente tiene bajo par de arranque, baja eficiencia y bajo factor de potencia. Tratándose
de un motor pequeño, las últimas dos consideraciones no son serias. Su bajo par de arranque limita su
aplicación a motores económicos de tornamesas, proyectores de cine, asadores eléctricos, ventiladores y fuelles pequeños, máquinas expendedoras, tornamesas de exhibición en escaparates, sintonizadores de TV de control remoto y otras cargas relativamente ligeras de servomecanismos. Su rango de potencia está comprendido en valores desde 0.0007 HP hasta 1/4 HP, y la mayoría se fabrica en el rango de 1/100 a 1/20 de HP.

No hay comentarios:

Publicar un comentario